Source code for remodeler.operations.convert_columns_op

"""Convert the type of the specified columns of a tabular file."""

# TODO finish implementation

from remodeler.operations.base_op import BaseOp


[docs] class ConvertColumnsOp(BaseOp): """Convert specified columns to have specified data type. Required remodeling parameters: - **column_names** (*list*): The list of columns to convert. - **convert_to** (*str*): Name of type to convert to. (One of 'str', 'int', 'float', 'fixed'.) Optional remodeling parameters: - **decimal_places** (*int*): Number decimal places to keep (for fixed only). Notes: """ NAME = "convert_columns" PARAMS = { "type": "object", "properties": { "column_names": { "type": "array", "description": "List of names of the columns whose types are to be converted to the specified type.", "items": {"type": "string"}, "minItems": 1, "uniqueItems": True, }, "convert_to": { "type": "string", "description": "Data type to convert the columns to.", "enum": ["str", "int", "float", "fixed"], }, "decimal_places": {"type": "integer", "description": "The number of decimal points if converted to fixed."}, }, "required": ["column_names", "convert_to"], "additionalProperties": False, "if": {"properties": {"convert_to": {"const": "fixed"}}}, "then": {"required": ["decimal_places"]}, }
[docs] def __init__(self, parameters): """Constructor for the convert columns operation. Parameters: parameters (dict): Parameter values for required and optional parameters. """ super().__init__(parameters) self.column_names = parameters["column_names"] self.convert_to = parameters["convert_to"] self.decimal_places = parameters.get("decimal_places", None)
[docs] def do_op(self, dispatcher, df, name, sidecar=None): """Convert the specified column to a specified type. Parameters: dispatcher (Dispatcher): Manages the operation I/O. df (DataFrame): The DataFrame to be remodeled. name (str): Unique identifier for the dataframe -- often the original file path. sidecar (Sidecar or file-like): Only needed for HED operations. Returns: DataFrame: A new DataFrame with the factor columns appended. """ df_new = df.copy() return df_new
[docs] @staticmethod def validate_input_data(operations): """Additional validation required of operation parameters not performed by JSON schema validator.""" return []