Source code for remodeler.operations.remap_columns_op

"""Map values in m columns in a columnar file into a new combinations in n columns."""

import pandas as pd
import numpy as np
from remodeler.operations.base_op import BaseOp
from hed.tools.analysis.key_map import KeyMap


[docs] class RemapColumnsOp(BaseOp): """Map values in m columns in a columnar file into a new combinations in n columns. Required remodeling parameters: - **source_columns** (*list*): The key columns to map (m key columns). - **destination_columns** (*list*): The destination columns to have the mapped values (n destination columns). - **map_list** (*list*): A list of lists with the mapping. - **ignore_missing** (*bool*): If True, entries whose key column values are not in map_list are ignored. Optional remodeling parameters: **integer_sources** (*list*): Source columns that should be treated as integers rather than strings. Notes: Each list element list is of length m + n with the key columns followed by mapped columns. TODO: Allow wildcards """ NAME = "remap_columns" PARAMS = { "type": "object", "properties": { "source_columns": { "type": "array", "description": "The columns whose values are combined to provide the remap keys.", "items": {"type": "string"}, "minItems": 1, }, "destination_columns": { "type": "array", "description": "The columns to insert new values based on a key lookup of the source columns.", "items": {"type": "string"}, "minItems": 1, }, "map_list": { "type": "array", "description": "An array of k lists each with m+n entries corresponding to the k unique keys.", "items": {"type": "array", "items": {"type": ["string", "number"]}, "minItems": 1}, "minItems": 1, "uniqueItems": True, }, "ignore_missing": { "type": "boolean", "description": "If true, insert missing source columns in the result, filled with n/a, else error.", }, "integer_sources": { "type": "array", "description": "A list of source column names whose values are to be treated as integers.", "items": {"type": "string"}, "minItems": 1, "uniqueItems": True, }, }, "required": ["source_columns", "destination_columns", "map_list", "ignore_missing"], "additionalProperties": False, }
[docs] def __init__(self, parameters): """Constructor for the remap columns operation. Parameters: parameters (dict): Parameter values for required and optional parameters. """ super().__init__(parameters) self.source_columns = parameters["source_columns"] self.destination_columns = parameters["destination_columns"] self.map_list = parameters["map_list"] self.ignore_missing = parameters["ignore_missing"] self.string_sources = self.source_columns self.integer_sources = parameters.get("integer_sources", []) self.string_sources = list(set(self.source_columns).difference(set(self.integer_sources))) self.key_map = self._make_key_map()
def _make_key_map(self): """ Raises: ValueError: If a column designated as an integer source does not have valid integers. """ key_df = pd.DataFrame(self.map_list, columns=self.source_columns + self.destination_columns) key_map = KeyMap(self.source_columns, target_cols=self.destination_columns, name="remap") key_map.update(key_df) return key_map
[docs] def do_op(self, dispatcher, df, name, sidecar=None) -> pd.DataFrame: """Remap new columns from combinations of others. Parameters: dispatcher (Dispatcher): Manages the operation I/O. df (DataFrame): The DataFrame to be remodeled. name (str): Unique identifier for the dataframe -- often the original file path. sidecar (Sidecar or file-like): Not needed for this operation. Returns: Dataframe: A new dataframe after processing. :raises ValueError: - If ignore_missing is False and source values from the data are not in the map. """ df1 = df.copy() df1[self.source_columns] = df1[self.source_columns].replace(np.nan, "n/a") for column in self.integer_sources: int_mask = df1[column] != "n/a" df1.loc[int_mask, column] = df1.loc[int_mask, column].astype(int) df1[self.source_columns] = df1[self.source_columns].astype(str) df_new, missing = self.key_map.remap(df1) if missing and not self.ignore_missing: raise ValueError( "MapSourceValueMissing", f"{name}: Ignore missing is False, but source values [{missing}] are in data but not map", ) return df_new
[docs] @staticmethod def validate_input_data(parameters): map_list = parameters["map_list"] required_len = len(parameters["source_columns"]) + len(parameters["destination_columns"]) for x in map_list: if len(x) != required_len: return [f"all map_list arrays must be of length {str(required_len)}."] missing = set(parameters.get("integer_sources", [])) - set(parameters["source_columns"]) if missing: return [f"the integer_sources {str(missing)} are missing from source_columns."] return []